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Measurement errors wield the potential to introduce 
uncertainties and inaccuracies, casting shadows on data quality 
and jeopardizing the integrity of structural relationships. 

Notably robust against measurement errors, Partial Least 
Squares Structural Equation Modelling (PLS-SEM) has 
historically maintained a reputation for resilience. However, 
recent insights have unveiled its susceptibility to these errors, 
instigating a revaluation of its standing in the Structural 
Equation Modelling landscape. Overlooking measurement 

errors in PLS-SEM carry consequential repercussions, notably 
tainting the accuracy of structural relationships and introducing 
bias. This effect becomes particularly pronounced when dealing 
with an insufficient understanding of the intricate structural 
dynamics. Unfortunately, PLS-SEM currently lacks an all-
encompassing remedy to address this concern. Consequently, 

the quantification of measurement errors impact in PLS-SEM 

gains paramount importance, fostering a demand for innovative 
strategies to propel its effectiveness forward. Notably, 
contemporary investigations have unmasked PLS-SEM's 
vulnerability to non-orthogonal errors. This revelation 
challenges the notion of its imperviousness to the detrimental 
influence of measurement errors, necessitating a 
comprehensive evaluation of its performance under such 

conditions. This study leveraged simulated data to extract 
empirical findings and employed parameters biasedness 
analysis. This analysis led to the determination that the stability 
of the PLS-SEM algorithm is compromised when exposed to 
diverse measurement error scenarios. Consequently, the 
outcomes generated exhibit both instability and bias. This bias 

becomes increasingly conspicuous as the magnitude of 
measurement errors intensifies. Thus, the study proposes 

avenues for elevating the robustness of PLS-SEM. 
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1. Introduction  
 

Structural Equation Models (SEMs) have emerged as a diverse set of statistical 

methodologies aiming to estimate causal relationships within theoretical models (Bollen, 1989; 

Kaplan, 2008). These models act as a link between latent complex concepts, each measured by 

a set of observable indicators. The fundamental premise behind SEMs is to analyse the intricacies 

within a system by exploring the networks of causality among latent variables, where each 

variable is assessed through multiple observed indicators, often referred to as Manifest Variables. 

This unique approach allows researchers to delve into the complexity of relationships between 

latent constructs and their observable manifestations (Hamblin & Hauser, 1975; Luce & Tukey, 

1964). Consequently, SEMs serve as a convergence point between Path Analysis and 

Confirmatory Factor Analysis, combining the causal modelling aspects of the former with the 

measurement modelling principles of the latter (Thurstone, 1961).  

 

Two distinct conceptual approaches have been proposed for analysing Structural Equation 

Models (SEMs): the factor-based SEM Jöreskog (2007) and the composite-based SEM (Wold, 

1975; Wold, 1982).  

 

In the factor-based SEM, also known as CB-SEM (Common Factor-based SEM), the 

unobservable or conceptual variables are approximated by common factors. This approach 

assumes that the construct exists independently of the observable variables and is the primary 

source of variation among them. In essence, factor-based SEM focuses solely on capturing the 

shared variance among latent and observable variables. Conversely, the composite-based SEM, 

also known as Partial Least Squares Path Modelling (PLSPM), represents the construct as a 

weighted composite or a combination of observed variables. This approach considers the 

construct as an aggregation of observable variables. It relies on traditional multivariate 

techniques like Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA), 

setting it apart from its factor-based counterpart (Arrow & Lehmann, 2006; Godshalk & Timothy, 

1988; Horst, 1965; Pearson, 1901).  

 

These methodological distinctions can be traced back to the works of Jöreskog and Wold 

(1982) respectively. The factor-based SEM draws inspiration from the classic works of Horst, 

Hotelling, Pearson, and Spearman, dating back to the early 20th century. On the other hand, the 

composite-based SEM builds upon established multivariate techniques, emphasizing the 

utilization of PCA (principal component analysis) and CCA (canonical correlation analysis) to 

elucidate relationships among observed variables. 

 

The PLS approach to structural equation modelling has been proposed as the component-

based estimation procedure different from the covariance based structural equation modelling. 

The main principals of the partial least squares were discussed in a seminal paper by Wold (1966) 

were extended to the more than one block of variable. Since its inception several extensions 

have been proposed to issues arising in the PLS-SEM procedures. The most common extensions 

include the confirmatory tetrad analysis (CTA- PLS), importance performance matrix analysis 

(IPMA), multi group analysis (MGA-PLS) and various approaches to assess the hierarchical 

component models, analysis of various interactions effects and the most important consistent 

partial least squares (PLSc) and various approaches to treat the correlated measurement errors. 

The recent advancements in the PLS-SEM include the various criterion for assessing discriminant 

validity based on the HTMT ratio of common factor correlation Henseler, Ringle, and Sarstedt 

(2015), utilization of the standardized root mean square residual (bootstrap-based) as an 

indicator for overall model fit Dijkstra and Henseler (2015a), incorporation of the Consistent 

Partial Least Squares SEM Dijkstra and Henseler (2015a, 2015b) to mitigate PLS bias, and 

adoption of Ord-PLS-SEM for handling ordinal data (Schamberger, Schuberth, Henseler, & 

Dijkstra, 2020).  
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The significance of these advanced techniques and PLS algorithm extensions is immense, 

aiding researchers and scientists in attaining the minimum estimation and analysis standards 

like other multivariate methodologies. The methodological progress and numerous extensions in 

PLS-SEM underscore the triumph of partial least squares structural equation modelling, 

particularly in domains characterized by limited sample size and less restrictive distributional 

assumptions (Reinartz, Haenlein, & Henseler, 2009). However, it's important to note that utilizing 

PLS as an estimator for structural equation modelling is not exempt from drawbacks and is robust 

against measurement errors. 

 

Despite the elegant and flexible modelling characteristics of PLS-SEM, several substantial 

concerns necessitate attention. A prominent issue pertains to estimating structural models in 

scenarios featuring measurement errors and non-orthogonal manifest variables or indicators. No 

existing simulation study has yet explored whether substantial measurement errors within 

structural models and indicators impact the adequacy and effectiveness of path coefficient 

estimations in variance-based SEM (Dijkstra & Henseler, 2015b). 

 

Neglecting measurement errors can yield far-reaching consequences for modelling 

approaches in variance-based structural equation modelling (Rigdon, 2014). Variance-based SEM 

has the potential to inflate path coefficients and magnify "t" values if these errors are disregarded  

(Goodhue, Lewis, & Thompson, 2012; Henseler, Hubona, & Ray, 2016). Consequently, the 

limitations of the Consistent Partial Least Squares estimator (PLSc) also become evident when 

dealing with potential measurement error issues among structural variables and indicators. This 

can result in relatively reduced statistical power and larger standard deviations (Dijkstra & 

Henseler, 2015b). This tendency could be more pronounced, particularly in cases of estimations 

involving small sample sizes, contradicting the fundamental design of the PLS-SEM algorithm. 

 

Measurement errors means inaccuracies and uncertainties introduced during the process 

of data collection or measurement. These errors can affect the reliability and validity of the data 

and structural relationships. The Partial least squares structural equation modelling (PLS-SEM) 

which is known to be the robust method against the measurement errors is no free from such 

fatal errors in data and not as soft as described in the literature of the SEM based on the data 

properties. Thus, the non-orthogonal measurement errors if ignored may have profound impacts 

on the performance of the model and the structural relationships may also be biased as do the 

measurement relationships. The variance based structural equation modelling is meant where 

we do not have much knowledge of the structural relationships and the purpose is to test the 

theory not to confirm the theory. Therefore, in the situation where we do not have much 

knowledge of the structural relationships the measurement errors have broad implications. The 

PLS-SEM do not have remedy to account for such measurement errors. Furthermore, the theory 

of measurement states that the formative models are assumed to be error free in a conventional 

sense, these assumptions have broader implications in the case where the variables are non- 

orthogonal and the evaluation of models involving formative indicators becomes complicated 

Hair, Ringle, and Sarstedt (2013) and the consequences of such errors are an issue in such 

situation. Therefore, the quantification of the impact of the measurement errors in case of PLS-

SEM is more important. Keeping in view the above discussion, therefore, the major purpose of 

the current paper is to empirically quantify the impact of the measurement errors non-

orthogonality and assess its impacts on the parameters of the model, on the structural 

relationships and suggesting the way forward for empirical advancements. 

 

As for the significance of the study is concerned, this paper will be a first attempt to 

explicitly measure the impacts of correlated measurement errors on the parameter estimates of 

the PLS-SEM framework. The renowned consistency (attenuation corrected) constant which is 

widely used in the PLS-SEM to account for the errors arising from the deviation of basic design 

is widely used to correct the inconsistency issue (Dijkstra & Henseler, 2015a). But that is another 

form of inconsistency (arising due to deviations from the basic design). Given the correlated 

errors and non-orthogonal nature of the variables in case of social sciences, it is not possible to 
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fulfil the restricted assumption orthogonality of the systematic errors of the variables of interest. 

So, this paper describes in detail the impact of non-orthogonal measurement errors on the 

measurement models and then on the structural parameters. This has wider implications as when 

there is no developed theory and assumption lies to develop (exploratory nature) a theory. The 

magnitudes and signs of the structural coefficients may have profound impacts, which are 

ignored relying on the assumption of the strict orthogonality. Therefore, the study will contribute 

to the PLS-SEM literature on sensitizing the role of correlated measurement errors and their 

consequences on theory development. 

 

The rest of the paper is organized in three sections. In the first section existing literature 

is analyzed and in remaining two sections empirical estimations and data analysis is presented. 

 

2. Literature Review 
 

The CB-SEM and PLS-SEM were developed almost at the same time in 1980’s. The CB-

SEM became more widely used in operational research because of its early availability through 

the LISEREL software since the late 1970’s. in contrast the first software of the PLS-SEM was the 

LVPLS Jagpal (1982) it was not a much user friendly later, PLS- GRPAH was developed by Chin 

and Todd (1995) and PLS-SEM got its momentum in various applications. With the development 

of Smart- PLS Ringle, Wende, and Will (2009) PLS-SEM applications were grown exponentially. 

So, the period from 1980 to 2000, it could not get many modifications and advancements as did 

the covariance-based structural equation modelling. After the development of Smart-Pls there 

got the era of modifications and advancements in the PLS-SEM. 

 

Vinzi, Chin, Henseler, and Wang (2009) introduced the methods to capture the 

unobserved heterogeneity in PLS-SEM the method commonly known as response-based unit 

segmentation analysis (REBUS- PLS) which generally relocates the observations from one 

segmentation to another while minimizing the residuals of the model. There were several other 

approaches to deal with the unobserved heterogeneity which were introduced in the same year. 

Notably, it includes renowned work of (Aluja-Banet & Sánchez; Hahn, Johnson, Herrmann, & 

Huber, 2002; Ringle et al., 2009; Vinzi, Ringle, Squillacciotti, & Trinchera, 2007).  

 

Henseler, Ringle, and Sinkovics (2009) presented the comparisons of four approaches to 

study the interaction effects between the latent variables using the partial least squares 

structural equation mode lining. They compared the product indicator approach Chin, Marcolin, 

and Newsted (2003), the two stage least squares approach Chin et al. (2003), a hybrid approach 

by Wold (1982) and an orthogonalizing approach Little and Rubin (2019) in terms of the accuracy 

of the point estimate, statistical power and prediction accuracy in the PLS-SEM framework by 

using extensive simulation and they recommended the orthogonalizing approach is better one 

where even the sample size is small. 

 

The hierarchical components model has long history in the covariance based structural 

equation modelling. Streukens, Wetzels, Daryanto, and de Ruyter (2010) introduced the concept 

into the PLS-SEM framework and further it was extended by Ringle, Sarstedt, and Straub (2012)  

who implemented this idea empirically in the information systems. Chin and Dibbern (2009) 

introduced the distribution free approach to the Multi group analysis in the PLS-SEM (MGA- PLS). 

it was further empirically implemented by Ringle et al. (2009). In the same decades, numerous 

articles were published on the observed heterogeneity in the PLS-SEM framework. Notable work 

in the subject includes the Finite mixture PLS by Ringle et al. (2009) the prediction-oriented 

segmentation analysis by Becker, Rai, Ringle, and Völckner (2013) and the genetic segmentation 

analysis (Ringle et al., 2009). Nowadays, to assess the observed heterogeneity in the PLS-SEM 

multi group analysis approach by Sarstedt (2019) is commonly applied. Other advance in the 

pls-sem include the introduction of the quadratic effects of the formative indicators by Henseler 

et al. (2016) and various approaches to discuss the consistency of the measurement and 
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structural models given the basic design of the PLS-SEM. Notably, includes the (Gefen, Rigdon, 

& Straub, 2011; Goodhue et al., 2012; Henseler et al., 2014; Raykov & Marcoulides, 2012).  

 

 Dijkstra and Henseler (2015a) introduced the consistent partial least squares algorithm 

(PLSc) to account for the inconsistency arising from the deviations of the assumption of the basic 

design that uses the formative and reflective measurement indicators simultaneously and they 

also concluded that the bias may also be present in the estimates if the measurement errors are 

present in the model. Therefore, they concluded that pls-Sem can be made equally competing 

with the CB- SEM even when the formative indicators are used in the PLS-SEM model using the 

consistent approach (PLSc) and that the measurement errors affect the size of the bias of the 

model. 

 

Chust, Steinle‐Neumann, Dolejš, Schuberth, and Bunge (2017) introduced the Ord-PLS 

to account for the ordinal data and in the same year Henseler et al. (2016) introduced the three-

step procedure to account for the measurement invariance. Hair Jr and Sarstedt (2019) used the 

discrete choice models to study the PLS-SEM most used models were logit, probit, and 

multinomial logit and thus suggested the situations in which how the PLS-SEM can be used with 

the binary ordinal data to model the relationships. Schamberger et al. (2020) conducted a 

simulation study to draw conclusions about the effects of data distortions on the parameter 

estimates of the PLS-SEM. The literature on how the measurement errors affect the model 

accuracy and consistency in the PLS-SEM framework is still not much available. Therefore 

numerous ad hoc approaches on how to deal with the measurement errors if these are present 

in the model but there is no scientific approach as do in the econometric framework to account 

these measures. 

 

There are two extremes to account for measurement errors correlation in the pls-sem on 

is the approach by Rademaker (2020) which is to define the set of non-orthogonal variables and 

excluding them from the analysis which is itself a specification error. While other extreme is to 

go with these errors as structural equation models are robust against the measurement errors 

which is general phenomenon without any scientific base. While some have shown serious 

concerns Jagpal (1982) So, the question of how to address the measurement errors in 

measurement model and/or in the structural models is still unaddressed and the available 

solutions are of limited nature. Some proposals the met in the literature are of deleting the 

correlated indicators when betrayal signs of the orthogonal appear and that the generating a 

new variable using the principal component analysis Hair et al. (2013) but, these approaches 

cannot be taken as for granted in a case where the application of method is when do not have 

much knowledge of the theory and we are not confirming but developing a theory. 

 

3. Methodology and Data-Generating Process 
 

The PLS-SEM methodology consists of estimating the two models simultaneously: the 

outer model or the measurement model and the inner model or the structural model. The 

convergence is achieved by an iterative procedure based on a certain truncation level. The 

convergence procedure comprised of four steps: outer approximation of latent variable scores, 

estimation of the inner weights, inner approximation of latent variable scores, and finally 

estimation of the outer weights. PLS-SEM is a non-parametric approach to structural equation 

modelling therefore, the bootstrap procedure is opted for the tests of goodness of fit of the 

model. The outer model or the measurement model is framed based on two theories that is the 

theories of measurement. The formative approach and the reflective approach. The choice of 

each theory of measurement is based on the underlying theory and objective of the study. The 

mathematics behind the PLS-SEM may be summarized as follows: 

 

If we let us assume the model with J latent constructs 𝜂1, 𝜂2, … , 𝜂𝑗 contained in a 𝐽 × 1 vector 

and connected by the structural model. The constructs are either modelled as the reflective way 
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or the formative way. There is 𝐾 × 1 vector of the indicator variables denoted as: 𝑥1, 𝑥, … , 𝑥𝑗 defined 

as the measurement errors prone manifestation of their respective constructs. Then the model 

can be represented as follows. 

 

𝑥𝑗 =  𝛾𝑗𝜂𝑗 + 𝑒𝑗           (1) 

 

Where, j is 𝑗 = 1,2,3, … , 𝐽 
 

The measurement errors are assumed to possess the following two properties. 

 

i. 𝐸(𝑒𝑗|𝜂𝑗) = 0, which means that the conditional mean of the 𝑥𝑗 is given by 𝐸(𝑥𝑗) = 𝐸(𝛾𝑗𝜂𝑗) +

𝐸(𝑒𝑗) and which further simplifies to 𝐸(𝑥𝑗) = (𝛾𝑗𝜂𝑗) and  

ii. 𝐸(𝜖𝑖𝜖�́�) = 0 

 

These properties are the results of classical assumptions of on the conditional mean and 

spherical distribution of the errors, in view of the above, the measurement errors correlation 

between the blocks is given by 𝐸(𝜖𝑗𝜖𝑗) = 𝜎2 and across the blocks is 𝐸(𝜖𝑖𝜖𝑗) = 0. Based on these 

the following variance covariance matrices are formulated. 

 

Σ𝑖𝑗 ≡ 𝐸(𝑥𝑖𝑥𝑗)́ = 𝜌𝑖𝑗𝜆𝑖𝜆�́�          (2) 

Σ𝑖𝑗 ≡ 𝐸(𝑥𝑖𝑥𝑗)́ = 𝜌𝑖𝑗𝜆𝑖𝜆�́�          (3) 

Σ𝑗𝑗 ≡ 𝐸(𝑥𝑗𝑥𝑗)́ = 𝜆𝑗𝜆�́� + 𝜎2         (4) 

 

If we let us assume the sample size of ‘n’ and for simplicity and no loss of generality, if 

we group the indicators belonging to one common factor or composite together to form a block 

‘𝐽’ and the observations of the block 𝐽 are stacked in the data matrix 𝑋𝑗 of the dimension (𝑛 × 𝐾𝑗) 

with the restriction that ∑ 𝑘𝑗 = 𝑘
𝑗
𝑗=1  and it is assumed that each block of observed variable is 

standardized then all the variables of the 𝑘𝑗 indicators are stacked in a data matrix X. it is 

important to note that the initialization of PLS algorithm takes place by assigning the arbitrary 

weights in such a way that �̂�𝑗
(0)́

𝑆𝑗𝑗�̂�𝑗
(0)

=1. There are several ways to assign weights but most 

used are path weighting scheme, factorial weighting scheme the centroid weighting scheme. In 

this way the algorithm initiates and four steps are completed. 

 

There are two ways in which the relationships in the measurement level can be 

accommodate. The mode ‘A’ in which it is assumed that the constructs exist, and this is the 

whole source of variation in the indicator variables. Therefore, there are as many regressions as 

many relationships are described in the path diagram. If we assume the regression of full data 

matrix of indicators and the latent variables, then following proportional relationship can be 

equivalently written as. 

 

�̂�𝑗
(ℎ+1)

∝ ∑ 𝑒𝑗𝑖
(ℎ)

𝑆𝑖𝑗
𝑗
𝑖=1 �̂�𝑖

(ℎ)
     with,  �̂�𝑗

(ℎ+1)`𝑆𝑗𝑗�̂�𝑗
(ℎ+1)

= 1      (5) 

 

For mode ‘B’ we know that there are single multiple regression equations, and the 

weights are the regression weights therefore, using the notation above the proportional 

relationship can written as 

 

�̂�𝑗
(ℎ+1)

∝ (𝑆𝑗𝑗)−1 ∑ 𝑆𝑗𝑗′
𝑗
𝑗′=1 �̂�𝑗′

(ℎ)
𝑒𝑗′𝑖

(ℎ)
     with,  �̂�𝑗

(ℎ)`𝑆𝑗𝑗�̂�𝑗
(ℎ)

= 1     (6) 

 

In this way, the iterative algorithm approaches to the convergence and the final weights 

are used to build the latent variables, factor loadings and the and path coefficients are the 

Ordinary least squares solution of the equations postulated by the structural model. If we let us 
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assume that the path models are recursive then the path coefficients are obtained by using the 

well-known results of the matrix algebra in the theory of regression analysis as: 

 

𝛽(𝑝𝑙𝑠−𝑠𝑒𝑚) = (𝑅𝑋)−1. 𝑟𝑥𝑦          (7) 

 

𝑹𝑿  is the correlation matrix of the independent variables and 𝒓𝒙𝒚  is the correlation 

between the independent and dependent variables. The assumption on the basic design of the 

PLS-SEM describes that the process is based on common factors but when the constructs are 

modelled as composite way then there is inconsistency in the parameter estimates of the outer 

model and the inner model and this inconsistency cannot be avoided until the measurement 

errors are zero in the model. This deviation from the basic design and the issue of inconsistency 

was addressed by Dijkstra and Henseler (2015a) in his famous proportionality constant to the 

population loadings. This proportionality constant is given by 𝑐𝑗
2 = 𝜆𝑗

′Σ𝑗𝑗𝜆𝑗 . This is also known as 

the correction for attenuation.  

 

This correction for attenuation is achieved in such a way that the squared Euclidean 

distance between the off-diagonal elements of the empirical covariance matrix 𝑆𝑗𝑗 and the matrix 

implied by the composite indicators  (𝐶𝑗�̂�𝑗)(𝐶𝑗�̂�𝑗)′ is minimized. Thus, utilizing the above 

information the correction for attenuation written in the form of matrix notation as above can be 

written as. 

 

�̂�𝑗
2 =

�̂�𝑗
′(𝑆𝑗𝑗−𝑑𝑖𝑎𝑔(𝑆𝑗𝑗))�̂�𝑗

�̂�𝑗
′(�̂�𝑗�̂�𝑗

′−𝑑𝑖𝑎𝑔(�̂�𝑗�̂�𝑗
′))�̂�𝑗

′         (8) 

 

It is important to note here that this correction for attenuation is based on the strict 

assumption that the measurement errors in the above expression are zero and that the system 

follows the assumption of basic design. When fulfilling these assumptions, the numerator in the 

above equation becomes a null matrix and the correction for attenuation becomes �̂�𝑗
2 = 𝜆𝑗

′ Σ𝑗𝑗𝜆𝑗 . 

this is the squared distortion of the population weights to the population loadings. Hence, the 

consistent factor loadings estimate, and the attenuation corrected correlation between the 

common factors j and i are given by: 

 

�̂�𝑗 = �̂�𝑗�̂�𝑗 and 𝑐𝑜𝑟𝑟(�̂�𝑗,�̂�𝑖) =
�̂�𝑗

′s𝑖𝑗�̂�𝑖

√�̂�𝐴𝑗.�̂�𝐴𝑖

        (9) 

 

This shows the estimated deattenuated correlation. The consistent path coefficients of 

the underlying structural model are estimated using the ordinary lest squares regression or the 

two stage least squares regression, that is by using. 

 

�̂�𝑐 = (𝑅𝑋)−1. 𝑟𝑥𝑦          (10) 

 

�̂�𝑐 are now the consistent estimates of the path coefficients. It is interesting to note here 

that deviation from the basic design and assumptions is always costly and this cost appeared in 

the form biased parameter estimates. This piece of paper is an effort to account for these biases 

and suggesting a way forward. 

 

3.1. A Simulation Study: Data Generating Process and Design Factor 
 

To capture the effect of measurement error non orthogonality. A simulation study base 

on various experimentally manipulated conditions is conducted and the base line model for 

simulation is chosen in such a way that it resembles the commonly used models in the applied 

research (Chen, Bollen, Paxton, Curran, & Kirby, 2001). The simulation model consists of four 

latent variables selected on the findings of Shah and Goldstein (2006) guidelines using the 
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commonly used configuration used in the PLS-SEM. The Montecarlo simulation examines a 

scenario with three exogenous latent variables and one endogenous. The exogenous are again 

measured by the maximum of six indicators denoting mode A for laten variable 𝜂2 the latent 

variable 𝜂4 with the six formative indicators and other two with the two indicators each. The 

following diagrams shows the specific data generating process: 

 

 
Figure 1: Population model  

 

The current problem of quantification of measurement errors is to quantify the impact of 

the measurement errors in the PLS-SEM framework. The measurement errors are thus 

incorporated into the model through the non-orthogonal errors of the model at measurement 

level. This is done by varying the strength of the association between the errors and across the 

indicators as shown in the figure above. The association is varied from 0.1 to 0.9 and its impact 

on the true parameter estimates of the model is observed. The true or population parameters 

are also defined by the following way. If we just assume keeping the strength of the model 

accurate and test for goodness of fit as minimum acceptable then, the model parameters are 

said to have the following population values. 

 

The factor loadings are fixed at 𝜆11 = .65 , 𝜆12 = .70, 𝜆21 = .75, 𝜆22 = .80, 𝜆23 = .65,  𝜆24 = 0.72, 

𝜆25 = .75, 𝜆26 = .78. Similarly for the formative construct the following is assumed 𝜆41 = .65 , 𝜆42 =
.80, 𝜆43 = .75, 𝜆44 = .80, 𝜆45 = .65 and 𝜆46 = .82 for the latent variable 𝜂4 we have the following 𝜆31 =
.70 and 𝜆32 = .75. This constitutes in other words the population measurement model. The 

structural model or inner model is formulated as: 𝜌14 = .17, 𝜌24 = .56 and 𝜌34 = .70. The 

measurement errors orthogonality as shown by the population model above is incorporated by 

varying the strength of correlation between and across the errors and the corelation between 

the indicator variable is also observed. The ranges for correlation are like that of Grewal, Cote, 

and Baumgartner (2004). Thus, under settings given above the model is assumed to behave 

following. 

 

i. The effect of 𝜂1 on 𝜂4 (𝜌14 = .17) which is not expected to be affected by the measurement 

errors correlation and the non-orthogonal indicator variables. It is expected that the PLSc 

in this case will recover the biased parameters. The direction of bias may be in either 

direction. 

ii. Similarly, the effect of 𝜂2 on 𝜂4(𝜌14 = .56) which is assumed not to be substantially affected 

by the non-orthogonal latent variables and by the measurement error correlation. The 

PLSc in this case is assumed to produce the biased estimates in both the models that is 

in measurement models and in the structural relationships. 
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iii. The effect of 𝜂3 on 𝜂4 (𝜌34 = .70) here, there are measurement errors correlation in both 

the models that is reflective and formative therefore, it is expected to behave not 

erroneously both in the measurement models and in the structural relationships as well. 

 

Given the simulations designs and design factors the above data generating process is 

connected by the following simultaneous equation systems. The structural relationships are given 

by,  

 

𝜂4 = 𝛼 + 𝜃1𝜂1 + 𝜃2𝜂2 +  𝜃3𝜂3 + 𝜀        (11) 

 

Where the measurement models are linked with the following equations: 

𝑧1 = 𝛼 + 𝜆11𝜂1 + 𝜈1         (12) 

𝑧1 = 𝛼 + 𝜆11𝜂1 + 𝜈1         (13) 

𝑧2 = 𝛼 + 𝜆12𝜂1 + 𝜈2         (14) 

𝑥1 = 𝛼 + 𝜆21𝜂2 + 𝑒1         (15) 

𝑥2 = 𝛼 + 𝜆22𝜂2 + 𝑒2         (16) 

𝑥3 = 𝛼 + 𝜆23𝜂2 + 𝑒3         (17) 

𝑥4 = 𝛼 + 𝜆24𝜂2 + 𝑒4         (18) 

𝑥5 = 𝛼 + 𝜆21𝜂2 + 𝑒5         (19) 

𝑥6 = 𝛼 + 𝜆26𝜂2 + 𝑒6         (20) 

𝑣1 = 𝛼 + 𝜆31𝜂3 + 𝜉3         (21) 

𝑣2 = 𝛼 + 𝜆33𝜂3 + 𝜉3         (22) 

 

And  𝜂4 is measured by formative indicators, 

 

η4 = α + λ41y1 + λ42y2 + λ43y3 + λ44y4 + λ45y5 + λ46y6 + ϖ    (23) 

 

Although there are many cases in which measurement errors can enter the model, by 

the present study assumes the following two scenarios. 

 

1. Non-Orthogonal Measurement errors across the indicator variables 

2. Non-Orthogonal latent variables due to Measurement errors 

 

Keeping in view the above setting of the population model, random numbers are drawn 

from the multivariate normal distributions with the sample size of 400. This is replicated 50,000 

times to draw the conclusions.  The study is based on relaxing the assumption of 𝐸(𝜖_𝑖 (𝜖_𝑗 ) ́=0. 

Therefore, varying the correlation between and across the indicators and latent variables and 

each time calculating the model for fifty thousand time the results are portrayed. The simulation 

is conducted in the R environment with the LAVAN and SEMinR Package, the next section 

summarizes the simulation results and possible findings of the study. 

 

4. Simulation Results  
 

This section comprises of detailed results of the simulation experiment which describes 

the ability of the PLSc to recover the true parameter values of the structural model as well the 

measurement model. The practical significance of Partial Least Squares (PLSc) in real-world 

scenarios might rely on its capacity to ascertain the importance of a parameter estimate from 

the standpoint of statistical power. While accurate statistical inferences are crucial for conducting 

dependable hypothesis tests, it is equally important to assign similar importance to the size of 

the structural parameters for result interpretation in predictive contexts. Hence, assessing the 

capability to accurately retrieve true parameters holds significance for practical researchers 

contemplating the adoption of PLS-SEM method. 

 



iRASD Journal of Economics 5(4), 2023 

 

 

914 

 

To assess the recovery of the Parameter under the given experimental settings, the mean 

absolute deviation (MAD) between the true parameter and their estimates is calculated as 

follows: 

 

𝑀𝐴𝐷 =
∑ |�̂�𝑗−𝜃𝑗|

𝑝
1

𝑝
          (24) 

 

 

Table 1 

Results of the Simulation 
Scenario 1:  Non-Orthogonal Measurement errors across the indicator variables 
  Measurement Model  Structural 

Model  

P
L
S
c
 

ϕ Loadings weights Path 
Coefficients 

𝛌𝟏𝟏 𝛌𝟏𝟐 𝛌𝟐𝟏 𝛌𝟐𝟐 𝛌𝟐𝟑 𝛌𝟐𝟒 𝛌𝟐𝟓 𝛌𝟐𝟔 𝛌𝟑𝟏 𝛌𝟑𝟐 𝛌𝟒𝟏 𝛌𝟒𝟐 𝛌𝟒𝟑 𝛌𝟒𝟒 𝛌𝟒𝟓 𝛌𝟒𝟔 𝐩𝟏𝟒 𝐩𝟐𝟒 𝐩𝟑𝟒 
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21 
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50 
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51 
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01 

0.7
50 
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05 
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53 

0.8
22 
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69 
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60 
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0.
4 
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01 
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50 
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04 
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50 
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05 

0.6
53 
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22 
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69 
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12 

0.698 
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5 

0.6
63 

0.7
15 

0.7
83 

0.8
10 

0.6
52 

0.7
28 

0.7
55 

0.7
82 

0.7
04 

0.7
51 

0.6
52 
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09 

0.7
51 

0.8
07 

0.6
54 
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25 
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64 
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12 
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0.
6 

0.6
75 

0.7
16 

0.7
81 

0.8
17 

0.6
51 

0.7
31 

0.7
52 

0.7
83 

0.7
02 

0.7
52 

0.6
51 

0.8
10 

0.7
51 

0.8
08 

0.6
58 

0.8
29 

0.1
62 

0.5
01 

0.670 

0.
7 

0.6
78 

0.7
23 

0.7
86 

0.8
21 

0.6
53 

0.7
34 

0.7
58 

0.7
83 

0.7
04 

0.7
51 

0.6
53 

0.8
10 

0.7
54 

0.8
09 

0.6
57 

0.8
29 

0.1
62 

0.5
01 

0.670 

0.
8 

0.7
00 

0.7
36 

0.7
89 

0.8
21 

0.6
55 

0.7
36 

0.7
58 

0.7
85 

0.7
03 

0.7
53 

0.6
57 

0.8
15 

0.7
55 

0.8
09 

0.6
78 

0.8
30 

0.1
60 

0.4
93 

0.661 

0.
9 

0.7
50 

0.7
44 

0.7
93 

0.8
22 

0.6
61 

0.7
38 

0.7
59 

0.7
89 

0.7
04 

0.7
51 

0.6
59 

0.8
14 

0.7
54 

0.8
11 

0.6
79 

0.8
30 

0.1
57 

0.4
91 

0.657 

Pop. 
Parame
ter 

0.6
50 

0.7
00 

0.7
50 

0.8
00 

0.6
50 

0.7
20 

0.7
50 

0.7
80 

0.7
00 

0.7
50 

0.6
50 

0.8
00 

0.7
50 

0.8
00 

0.6
50 

0.8
20 

0.1
7 
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60 

0.70 

Sample size N= 400, Number of Simulations R= 50,000 and Phi (ϕ) is the strength of association between the measurement errors. 

 

Table 2 

Biasedness Analysis (MAD) 
Scenario 1:  Non-Orthogonal Measurement errors across the indicator variables 
  Measurement Model  Structural 

Model  
PL
Sc 

𝛟  Loadings weights Path 
Coefficients 

𝛌𝟏𝟏 𝛌𝟏𝟐 𝛌𝟐𝟏 𝛌𝟐𝟐 𝛌𝟐𝟑 𝛌𝟐𝟒 𝛌𝟐𝟓 𝛌𝟐𝟔 𝛌𝟑𝟏 𝛌𝟑𝟐 𝛌𝟒𝟏 𝛌𝟒𝟐 𝛌𝟒𝟑 𝛌𝟒𝟒 𝛌𝟒𝟓 𝛌𝟒𝟔 𝐩𝟏𝟒 𝐩𝟐𝟒 𝐩𝟑𝟒 

0.1 0.00
0 

0.0
00 

0.07
2 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.00
0 

0.0
00 

0.00
0 

0.00
0 

0.0
00 
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0 

0.2 0.00
0 

0.0
00 
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6 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 
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0 

0.0
00 
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0 
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0 

0.0
00 
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0 

0.3 0.00
5 

0.0
05 

0.03
9 

0.0
01 

0.0
00 

0.0
01 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
01 

0.0
01 

0.0
00 
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5 

0.0
03 
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2 
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1 

0.0
00 
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0 
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1 

0.0
10 
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3 

0.0
07 

0.0
01 

0.0
05 

0.0
05 

0.0
01 

0.0
01 

0.0
00 

0.0
02 

0.0
04 

0.0
00 

0.00
5 

0.0
03 

0.00
2 

0.00
1 

0.0
48 

0.00
2 

0.5 0.01
3 

0.0
15 

0.03
3 

0.0
10 

0.0
02 

0.0
08 

0.0
05 

0.0
02 

0.0
04 

0.0
01 

0.0
02 

0.0
09 

0.0
01 

0.00
7 

0.0
04 

0.00
5 

0.00
6 

0.0
48 

0.00
2 

0.6 0.02
5 

0.0
16 

0.03
1 

0.0
17 

0.0
01 

0.0
11 

0.0
02 

0.0
03 

0.0
02 

0.0
02 

0.0
01 

0.0
10 

0.0
01 

0.00
8 

0.0
08 

0.00
9 

0.00
8 

0.0
59 

0.03
0 

0.7 0.02
8 

0.0
23 

0.03
6 

0.0
21 

0.0
03 

0.0
14 

0.0
08 

0.0
03 

0.0
04 

0.0
01 

0.0
03 

0.0
10 

0.0
04 

0.00
9 

0.0
07 

0.00
9 

0.00
8 

0.0
59 

0.03
0 

0.8 0.05
0 

0.0
36 

0.03
9 

0.0
21 

0.0
05 

0.0
16 

0.0
08 

0.0
05 

0.0
03 

0.0
03 

0.0
07 

0.0
15 

0.0
05 

0.00
9 

0.0
28 

0.01
0 

0.01
0 

0.0
67 

0.03
9 

0.9 0.10
0 

0.0
44 

0.04
3 

0.0
22 

0.0
11 

0.0
18 

0.0
09 

0.0
09 

0.0
04 

0.0
01 

0.0
09 

0.0
14 

0.0
04 

0.01
1 

0.0
29 

0.01
0 

0.01
3 

0.0
69 

0.04
3 
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By utilizing MAD as a measure of performance, this study aims to distil the essence of 

technique effectiveness and shed light on their relative merits. The subsequent synthesis 

encapsulates the essence of the simulation's findings, offering a succinct overview of the 

techniques' performance in relation to MAD. 

 

The outcomes of the simulation study reveal significant insights into the performance of 

the analysed techniques, with mean absolute deviation (MAD) serving as the key yardstick for 

assessing their efficacy. Through rigorous analysis, it becomes evident that the techniques' 

performance varies in relation to the magnitude of MAD values. Techniques exhibiting lower 

MAD values showcase superior accuracy and precision in approximating the desired outcomes. 

Conversely, higher MAD values are indicative of greater discrepancies between estimated and 

actual values, highlighting potential limitations in certain approaches. These results underscore 

the critical role of MAD as a reliable indicator for evaluating the robustness and reliability of the 

techniques under scrutiny. 

 

The parameter estimates under varying conditions and of the measurement models and 

the structural. The table 1 represents the parameter estimates of the simulated data with the 

true parameter values given in the last row of the table. It is clear from the table that the outer 

model or measurement model is overestimated in this case when there are measurement 

errors correlation across the indicator of the model. 

 

Therefore, the parameter estimates are biased upward, and the strength of biasedness 

increases as the error’s correlation increases. Similar effects have been observed in the case of 

formative model. The structural parameters are biased downward. As the strength of 

correlation across the measurement errors increases the structural parameter falls away from 

the true parameter. Therefore, the parameter estimates of the structural model are biased 

downwards. This inconsistency is like that of the findings of Henseler et al. (2015) when 

deriving the PLSc in case when there are reflective and formative model associated in the path 

diagram. The absolute bias calculated from the given results is presented in the table 2 under 

the same case of non-orthogonality. 

 

 
Figure 2: Mean absolute deviation (MAD) and the measurement errors correlation for 

path between eta_2 and eta_4. 

 

The bias assessment is conducted through the examination of the Measurement Model 

and Structural Model of the PLSc technique. The Loadings, weights, and Path Coefficients are 

evaluated using the extent of bias in the estimated parameters. For differing levels of underlying 

structural parameter values, the MAD values provide insights into the degree of bias present in 

the parameter estimates. It is discernible that as the magnitude of these parameters increases, 

there is a corresponding increase in MAD values, indicating an escalation in bias (fig 2). This 
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biasedness analysis underscores the importance of comprehending the impact of non-orthogonal 

measurement errors on the parameter estimation process, and the subsequent implications for 

the reliability and validity of the PLSc technique in empirical applications. For clear depiction. The 

bias analysis is presented in the graphical form for the structural parameters. 

 

The scenario 1 delves into the consequences of measurement errors across the indicators. 

The outcomes, as presented in tables 1 and 2 and illustrated in graphical analysis (fig 2,3,4), 

strongly suggests that parameter estimations within both the outer and inner models lack 

stability under these circumstances, displaying a high degree of sensitivity. Notably, the outer 

model's parameter estimates lean toward overestimation, signaling that when errors are 

correlated among indicator variables, the true impact of parameter estimates becomes biased, 

potentially leading to type-I errors. The structural model parameters biasedness against the MAD 

is presented in fig 2,3 and 4. 

 

  
Figure 3:(MAD) and error correlation between  Figure 4: MAD and error correlation between 
eta_3 and eta_4.     eta_1 and eta_4 

 

This observation raises concerns about the possibility of mistakenly considering certain 

indicator variables as pivotal, even though their significance might not hold in the population 

model. Similar trends are observed with formative indicators. The coefficient estimates of 

genuine relationships also display a tendency toward overestimation, amplifying the likelihood 

of type-I errors and indicating the potential misclassification of certain parameters as crucial 

contributors, despite their limited influence in the population model. This discrepancy arises from 

the exaggerated loading values of associated indicators. Furthermore, it is evident that as the 

degree of association escalates, biasedness proportionally increases. Notably, when estimated 

parameters align within the acceptance range of the loadings, the extent of biasedness 

experiences a more pronounced surge, particularly as the association value surpasses the range 

of 0.6 to 0.9. 

 

Given the findings from the initial case and the behaviors of parameter estimations, the 

interpretation of coefficients and the determination of an indicator's practical relevance to its 

corresponding construct become intricate, especially when the estimated value gravitates toward 

the acceptance region. Regarding biasedness, the structural parameters deviate from the true 

parameter values, displaying a downward bias. This signifies an underestimation of the true 

effect, particularly when errors are correlated across indicator variables. The evaluation of bias 

using mean absolute deviation further indicates a proportional increase in bias as the degree of 

error correlation rises. As a result, the significance of measurement errors within the model, 

particularly at this level, cannot be overstated. This case underscores the imperative nature of 

acknowledging measurement errors even within the context of PLS-SEM and it has serious 

implications for the theory testing. 
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The scenario 2 of correlation between 𝜂1 and 𝜂2 is bit different from the other cases. This 

variance specifically underscores the classical manifestation of multicollinearity arising due to 

measurement errors. While the underlying effect resembles other instances, the degree of impact 

differs. Initially, when there's minimal association between the interconnected underlying 

constructs, the resultant effect is also minimal. However, as this association surpasses 0.6 and 

advances to 0.8, the consequences become detrimental. This is evidenced by wider confidence 

intervals and amplified standard error values, which consequently contribute to type-II errors. 

Consequently, some effects that are significant within the population might not be deemed 

significant due to these errors. 

 

This trend becomes even more pronounced as the association level climbs to 0.90 or 

beyond. Consequently, imprecise estimations of coefficients and standard errors emerge as 

products of this type of measurement inaccuracy. Through the lens of Mean Absolute Deviation 

(MAD) analysis, the bias computed in relation to the correlation between latent variables and 

their effects accentuates the importance of cautious handling of correlated latent variables. This 

suggests that attention is warranted when dealing with non-orthogonal indicators to ensure 

accurate results. The case of non-orthogonal latent variables is different from the measurement 

errors correlation.  

 

Table 3 

Results of the Simulation for Scenario 2 
Scenario2:  Non-Orthogonal latent variables due to Measurement errors across  

  Measurement Model  Structural Model  

PLS
c 

𝜙 
Loadings weights Path Coefficients 

𝝀𝟏𝟏 𝝀𝟏𝟐 𝝀𝟐𝟏 𝝀𝟐𝟐 𝝀𝟐𝟑 𝝀𝟐𝟒 𝝀𝟐𝟓 𝝀𝟐𝟔 𝝀𝟑𝟏 𝝀𝟑𝟐 𝝀𝟒𝟏 𝝀𝟒𝟐 𝝀𝟒𝟑 𝝀𝟒𝟒 𝝀𝟒𝟓 𝝀𝟒𝟔 𝒑𝟏𝟒 𝒑𝟐𝟒 𝒑𝟑𝟒 
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0.179 0.5
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0.7
50 

0.8
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0.4
88 

0.5
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0.5
14 

0.5
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0.5
56 

0.4
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0.5
84 

0.5
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0.6
11 

0.6
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0.5
55 

0.4
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0.8
30 

0.207 0.6
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Sample size N= 400, Number of Simulations R= 50,000 and Phi (ϕ) is the strength of association between the measurement errors. 

 

The empirical evidence suggests that in cases where there is high-rate non-orthogonality 

between indicators, factor loadings behaved erroneously. In some part of the model, they are 

underestimated while in other are overestimated. This is because the shared   variance between 

indicators can lead to an apparent reduction in the unique variance that each indicator 

contributes to the latent construct. 

 

As a result, factor loadings might appear lower than they truly are, giving the impression 

that the indicators are less related to the construct than they are in the population model. 

similarly, On the other hand, overestimation of factor loadings occurred when the collinearity 

between indicators artificially inflates the variance associated with the latent construct. As a 

result, factor loadings might appear higher than they would be in the case of orthogonal 

variables, suggesting stronger relationships between indicators and the latent construct than 
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they are in the case of population parameters, this happens with the 𝜆43, 𝜆44, 𝜆45 and 𝜆46 

respectively. 

 

Table 4 

Biasedness Analysis for Scenario 2 
Scenario 2:  Non-Orthogonal latent variables due to Measurement errors  
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Figure 5: MAD and strength of non-orthogonality for p_14 

 

Overall, this, suggests that the correlated latent variables lead to unstable and unrealistic 

factor loadings and structural model parameters. 

 

The Mean Absolute Deviation (MAD) values of the estimated parameters provide further 

insight into this phenomenon. As the degree of association among variables changes, the 

parameters exhibit heightened sensitivity to variations. This sensitivity is particularly noticeable 

when the parameter values respond minimally to alterations in association strength. However, 

in a significant number of cases, the opposite trend prevails, where the extent of bias increases 

concomitantly with shifts in association. This highlights the remarkable influence of these 

measurement errors on the parameter estimates. Delving deeper, the MAD values offer a 

comprehensive perspective on the effect of varying association degrees. 

 

When parameter estimates exhibit a decrease in bias, it generally implies that the 

inherent nature of these parameters restrains their responsiveness to changes in association. 

This restraint might be attributed to the robustness of the underlying relationships, or the specific 
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characteristics of the constructs being measured. On the other hand, most scenarios depict a 

rather contrasting picture (see figure, 5,6 and 7): a rise in bias proportional to fluctuations in 

association strength. This phenomenon underscores the delicate nature of these measurement 

errors and how they can substantially skew the perceived relationships between variables. Such 

bias amplification is particularly pronounced in cases where the measurement errors are more 

prevalent or pronounced. In essence, the relationship between parameter estimates and the 

degree of association is nuanced and multifaceted. This underscores the critical importance of 

rigorous measurement and careful consideration of the potential impact of measurement errors 

in the pursuit of accurate and reliable results in various analyses and models. 

 

  
Figure 6: trends in MAD against the   Figure 7: MAD and Phi relationship for  

non-orthogonality strength for p_24  p_34 

 

5. Conclusion 
 

Present study is an attempt to quantify the effects of measurement errors on 

parameters estimates of the measurement model and structural relationships in the 

structural model in the framework of PLS-SEM. The result of study unveils the crucial insights 

into the intricate interplay between the measurement errors, parameter estimates and 

degree of association among the latent variables. Through an in-depth exploration of the 

mean absolute deviation values, the comprehensive understanding of the degrees of 

association on the sensitivity of estimated parameters has been presented. The 

findings/analysis vividly illustrates that the influence of association strength on parameter 

estimates is far from uniform. The data reveal a dualistic pattern: parameters exhibit 

heightened sensitivity to association changes in some instances, while in others, the 

sensitivity is notably subdued. This phenomenon is indicative of the underlying complexity 

and multifaceted nature of the relationships between variables. 

 

Furthermore, the phenomenon of bias in parameter estimates emerges as a pivotal 

factor in this context. We observed a parallel trend between bias and sensitivity, with a 

notable correlation between the two. Instances where the parameter values are minimally 

affected by changes in association tend to exhibit decreased bias, reflecting the robustness 

of these parameters. Conversely, a significant portion of cases demonstrates an exacerbation 

of bias as the association strength fluctuates. This emphasizes the pivotal role of 

measurement errors in influencing the parameter estimates and consequently the validity of 

the overall model. 

 

In essence, our study underscores the importance of meticulously considering the 

presence of correlated factors, formative indicators, and latent variables when analysing 

parameter estimates in structural equation modelling. The implications are vast and have 

far-reaching consequences for diverse fields where these models are applied. As we move 
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forward, the findings compel researchers to adopt a meticulous approach, accounting for 

measurement errors and considering the intricate relationships between variables to ensure 

accurate and reliable results in their analyses. 

 

Historically, researchers have frequently operated under the assumption that 

Structural Equation Modelling (SEM), due to its ability to account for measurement error and 

adjust for path attenuation, alleviates concerns related to measurement errors unreliability. 

However, our study's findings unequivocally demonstrate the invalidity of this assumption in 

PLS-SEM. Although SEM offers an improvement over techniques like regression that 

disregard measurement error, resulting in inconsistent parameter estimations, our research 

underscores the substantial impact of measurement error on the accuracy of estimations for 

coefficients in both the models. This, consequently, escalates the likelihood of parameters 

interpretation especially where, the concern is to test the theory. 

 

The implications of these findings are far-reaching. The importance of employing 

reliable measures remains unparalleled, emphasizing that researchers must conscientiously 

prioritize the utilization of dependable measurement instruments. This practice, while crucial, 

can greatly contribute to the enhancement of the integrity and robustness of research 

outcomes in PLS-SEM. 

 

5.1. Way forward 
 

Given the potential implications of non-orthogonal measurement errors, it is therefore, 

imperative for the researchers to considers these findings before explicitly drawing results 

from the PLS-SEM models. The presence of correlated measurement errors carries significant 

implications, particularly with respect to parameter estimates and inherent bias within the 

specified conditions. Considering the ongoing advancements and refinements in PLS-SEM 

methods, it would be prudent to develop an appropriate strategy that addresses the 

correlations among these errors, much like the strategies used in classical econometrics. 

Adopting robust techniques such as ridge regression or shrinkage methodologies within the 

PLS-SEM framework can effectively account for these error correlations 
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